Predictive Distribution Model of the Specie Beryx decadactylus (Imperador) in the Azorean sea
This layer provides geographic information related to a predictive distribution modelling for the demersal fish specie Beryx decadactylus (Imperador) in the Azorean sea.
Simple
- Date (Creation)
- 2013-06-12
- Citation identifier
- http://id.igeo.pt/cdg/5a42b19a-f2f5-4ed2-918e-9229ab0a423d
- Purpose
-
O objetivo deste recurso é fornecer informação sobre a distribuição desta espécie de peixes demersais na região dos Açores para projetos científicos futuros e gestão do mar dos Açores.
- Credit
-
IMAR/DOP (Departamento de Oceanografia e Pescas - Universidade dos Açores).
- Credit
-
Direção Regional dos Assuntos do Mar
- Status
- Completed
- Point of contact
-
Organisation name Individual name Electronic mail address Role Universidade dos Açores - Departamento de Oceanografia e Pescas
Ricardo Medeiros
Point of contact Universidade dos Açores - Departamento de Oceanografia e Pescas
Frederico Cardigos
Point of contact Universidade dos Açores - Departamento de Oceanografia e Pescas
Telmo Morato
Point of contact Universidade dos Açores - Departamento de Oceanografia e Pescas
Antonio David Peran
Point of contact
- Maintenance and update frequency
- As needed
-
GEMET - INSPIRE themes, version 1.0
-
-
Distribuição das espécies
-
-
Thesaurus SNIMar v.1.0
-
-
Biodiversidade e Conservação Marinha
-
-
Thesaurus SNIMar v.1.0
-
-
Região Autónoma dos Açores
-
-
Thesaurus SNIMar v.1.0
-
-
Beryx decadactylus
-
-
Thesaurus SNIMar v.1.0
-
-
Espécie
-
-
Thesaurus SNIMar v.1.0
-
-
Palangre de fundo
-
-
Thesaurus SNIMar v.1.0
-
-
Peixes demersais
-
- Place
-
-
RAA
-
- Use limitation
-
Dados disponíveis de acordo com os termos e política de dados do Centro IMAR - Instituto do Mar da Universidade dos Açores
- Access constraints
- Copyright
- Use constraints
- Copyright
- Spatial representation type
- Grid
- Distance
- 360.0 http://standards.iso.org/ittf/PubliclyAvailableStandards/ISO_19139_Schemas/resources/uom/ML_gmxUom.xml#m
- Language
- Portuguese
- Character set
- UTF8
- Topic category
-
- Biota
- Oceans
- Reference system identifier
- EPSG / http://www.opengis.net/def/crs/EPSG/0/3395
- Distribution format
-
Name Version RASTER geodatabase
ArcGis 10.1
- Distributor contact
-
Organisation name Individual name Electronic mail address Role DRAM - Direção Regional dos Assuntos do Mar
Marco Aurélio Santos
Distributor
- Hierarchy level
- Dataset
Extent
Conformance result
- Date (Publication)
- 2010-12-08
- Explanation
-
Ver a especificação citada.
- Pass
- No
- Statement
-
Predictive Distribution Modelling is an innovative GIS-based method used to produce predictive maps of where elements (species, ecological community type) are likely to occur and likely to not occur. The probability of ocurrence is quantified and is directly related to underlying environmental variables and the locations of known ocurrences. On this raster, models were constructed based on fish occurrence and abundance data gathered from 13 years of bottom longline surveys combined with fine scale derived seafloor variables (depth, sediment type, bottom slope and aspect, converted into eastness and northness). (Extracted from "Spatial Prediction of demersal fish species presence and abundance in the Azores", Hugo Parra et al., 2014)The limit value that identifies presence/absence on this specie is 0.139.
- Description
-
Spatial Prediction of demersal fish species presence and abundance in the Azores, Hugo Parra et al., 2014
Metadata
- File identifier
- 5a42b19a-f2f5-4ed2-918e-9229ab0a423d XML
- Metadata language
- Portuguese
- Character set
- UTF8
- Hierarchy level
- Dataset
- Date stamp
- 2017-03-30
- Metadata standard name
-
Perfil SNIMar
- Metadata standard version
-
v.0.9.3
- Metadata author
-
Organisation name Individual name Electronic mail address Role DRAM - Direção Regional dos Assuntos do Mar
Marco Aurélio Santos
Point of contact DRAM - Direção Regional dos Assuntos do Mar
Paulo Fernando das Neves Miranda
Author DRAM - Direção Regional dos Assuntos do Mar
Daniela Sofia da Silva Pereira
Author
- Other language
-
Language Character encoding English UTF8