Species and habitats - Sprattus sprattus - Nurseries - Potential habitat modellised by Quantile Regression and its uncertainty for YFS survey
Modelised abundances of several species in coastal nurseries or prediction uncertainty.
Simple
- Autres appellations ou acronymes
-
YFS_species_model
- Date (Publication)
- 2009-12-31T00:00:00
- Identificateur
- CHARM_SPRASPR_NURS_RQ_MOD_ERR_R
- Identificateur
- CHARM_SPRASPR_NURS_RQ_MOD_ERR_R
- Forme de la présentation
- Carte numérique
- Autres informations de référence
-
Source CHARM Consortium
- Reconnaissance
-
IFREMER
- Reconnaissance
-
CHARM consortium
- Etat
- Finalisé
- Contact pour la ressource
-
Nom de l'organisation Nom de la personne Adresse e-mail Rôle Center for Environment, Fisheries & Aquaculture Science
Steve Mackinson
Fournisseur Ifremer
Sandrine Vaz
Fournisseur CHARM Consortium
CHARM Consortium
Gestionnaire
- Fréquence de mise à jour
- Lorsque nécessaire
-
Thèmes Sextant
-
-
/Milieu biologique/Espèces/Espèces d'intérêt halieutique
-
- Discipline
-
-
espèces
-
CHARM
-
-
GEMET - INSPIRE themes, version 1.0
-
-
Habitats et biotopes
-
-
external.theme.gemet
-
-
ressource halieutique
-
- Thème
-
-
zone fonctionnelle halieutique
-
-
Cadre Réglementaire - SIMM
-
-
Directive Cadre Stratégie pour le Milieu Marin (DCSMM)
-
-
DCSMM : Descripteurs
-
-
D1: Biodiversité - Céphalopodes
-
D1: Biodiversité - Poissons
-
-
Sous-regions marines
-
-
/Métropole/Manche mer du Nord
-
-
Thématiques - SIMM
-
-
/Etat du Milieu/Espèces
-
/Etat du Milieu/Habitats
-
/Activités et Usages/Pêche et Aquaculture
-
- Limitation d'utilisation
-
research-only
- Contraintes d'accès
- Licence
- Autres contraintes
-
Has to be cited this way in maps : "Source CHARM Consortium"
- Autres contraintes
-
Has to be cited this way in bibliography : "Carpentier A, Martin CS, Vaz S (Eds.), 2009. Channel Habitat Atlas for marine Resource Management, final report / Atlas des habitats des ressources marines de la Manche orientale, rapport final (CHARM phase II). INTERREG 3a Programme, IFREMER, Boulogne-sur-mer, France. 626 pp. & CD-rom"
- Type de représentation spatiale
- Raster
- Dénominateur de l'échelle
- 2500
- Langue de la ressource
- Français
- Langue de la ressource
- English
- Encodage des caractères
- Utf8
- Catégorie ISO
-
- Biologie, faune et flore
- Description de l'environnement de travail
-
Microsoft Windows XP ; ESRI ArcGIS 9.x
- Identifiant géographique
- Eastern English Channel
- Date de début
- 1977-01-01
- Date de fin
- 2006-12-31
- Nom du système de référence
- WGS 84 (EPSG:4326)
- Dimensions
- 2
- Noms des axes
- Axe - X
- Nombre de pixel
- 489
- Résolution
- 0.009 degree
- Noms des axes
- Axe - Y
- Nombre de pixel
- 278
- Résolution
- 0.009 degree
- Type de raster
- Surface
- Disponibilité des paramètres de transformation
- Non
Distributeur
- Contact
-
Nom de l'organisation Nom de la personne Adresse e-mail Rôle Ifremer - Centre de Brest
Distributeur
- Format du distributeur
-
Nom Version
- Ressource en ligne
-
Protocole Adresse Internet Nom OGC:WMS
https://sextant.ifremer.fr/services/wms/wms_charm CHARM_SPRASPR_NURS_RQ_R
OGC:WMS
https://sextant.ifremer.fr/services/wms/wms_charm CHARM_SPRASPR_NURS_RQ_MOD_ERR_R
WWW:LINK
http://www.ifremer.fr/charm/ COPYFILE
Probable habitat
COPYFILE
Model error
- Niveau
- Jeu de données
- Généralités sur la provenance
-
Combinations of the French YFS and the British YFS.
- Description
-
Quantile Regression (RQ) belongs to the family of regression approaches that also includes simple li-near and multiple regression (Koenker, 2005). In RQ, any part of the data distribution may be modelled rather than the mean (a quantile q describing the value greater or equal to q% of the observed data, or in other words the upper bound of q% of the observed data). The study of the upper-bound of response data (typically abundance between 0.75 and 0.95 quantiles) as a function of environmental factor (figure 3) allows estimating their limiting effects on a species distribution (Cade et al., 1999; Hiddink & Kaiser, 2005). As for GLM modelling (see §4.1), the selected environment predictors were: temperature, salinity, bed shear stress, depth, chlorophyll a concentration (only for the egg stage) and fluorescence (only for the larval stage) as continuous covariables and seabed sediment type as factor. Model selection with RQ is made complicated by the large number of candidate models that can be estimated over a range of different quantiles (i.e. one model per quantile): in other words, the model selection includes both the selection of explanatory variables and that of the quantile at which there are considered. Model selection was carried out by initially fitting a model to all available explanatory variables (continuous parameters were introduced as second order polynomials, nominal variables as factors and all first order interactions between environmental parameters were considered; note that interactions were not tested for the egg stage). The selection procedure used is that proposed by Vaz et al. (2008). RQ models were estimated at five quantile intervals, from the 75th to the 95th. Using a backwards elimination procedure, significance tests of all polynomials and interactions were performed and the variable associated with the largest average p-value across the five quantiles, contingent on being greater than 0.05, was selected to be removed from the model. The reduced model hence obtained was then re-run across all five quantiles, and additional variables were removed according to the same rule. Main effects were tested only when associated interactions and second order polynomials had been eliminated. The process of backward elimination was stopped when all remaining variables were significant (p < 0.05) at least for one quantile (Vaz et al., 2008), this quantile being selected as the representative quantile. In case the resulting model was found to have all variables significant over more than one quantile, the highest of these quantiles was chosen, as the more representative of the limiting effect imposed by the environmental variables over the species abundance. For each species considered, the equation of the final habitat model was used to recode digital maps of the environmental factors with the predicted abundance (or presence probability) of the species, using the Raster Calculator tool, thereby producing a habitat map. Prior to this and for each survey, digital (raster) maps of the environmental parameters had been limited to the ranges of values observed during the surveys, so as to avoid extrapolating outside the model development bounds. The resulting habitat maps were further centred and standardised, so that the resulting maps ranged between 0 and 1, thereby permitting an easier comparison amongst results from different stage, species or season (notable exceptions are the habitat maps based on binary data, and the larval stage habitat maps). The spatial distribution of the model error ratios was mapped for each model, the value of 1 corresponding to the maximum possible prediction error. The model prediction error can thus be interpreted as a percentage of model uncertainty.
- Description
-
FYFS plus BYFS surveys
Métadonnées
- Identifiant de la fiche
- 441dfb9f-393a-4141-ada5-6c9bdb9320df XML
- Langue
- English
- Jeu de caractères
- Utf8
- Identifiant de la fiche de métadonnées parent
-
55b44ab3-0b69-4bc4-8d4d-0ad2e022005c
55b44ab3-0b69-4bc4-8d4d-0ad2e022005c
- Type de ressource
- Jeu de données
- Date des métadonnées
- 2021-10-11T11:21:36
- Nom du standard de métadonnées
-
ISO 19115:2003/19139 - SEXTANT
- Version du standard de métadonnées
-
1.0
- Contact
-
Nom de l'organisation Nom de la personne Adresse e-mail Rôle Ifremer
Fanny Lecuy
Point de contact
- Autre langue
-
LanguageCode CharacterEncoding Français Utf8 Anglais Utf8